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Model Setup

Scaling the weight shifts the spike timeModel Equations
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Likelihood of an output spike train
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A % , ; % 	are desired and observed 
instantaneous firing probabilities 
respectively
The objective is to maximize the 
likelihood of the spike train 
∑& ℒ A % , ; % = ∑& ℒ(%)

Modulating Noise Level

Training Procedure
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Abstract
• Aim: Bridging 

efficiency/performance gap 
between rate and spike-timing 
based models.

• Method: Unified gradient-based 
learning rule for two-compartment 
LIF neuron with noisy current input 
to the membrane.

• Takeaway: Continuum between 
rate and spike time codes emerges 
as the noise magnitude is varied 
producing rate code in presence of 
higher noise and temporal code in 
presence of lower noise

Introduction
• Developing learning algorithms for 

SNNs remains an open challenge.
• Rate codes: 

• Pros: Error-tolerance and 
correspondence with Artificial 
Deep Neural Networks. Training 
with surrogate gradients.

• Cons: May learn energy 
inefficient codes.

• Timing codes: 
• Pros: Efficient codes that can 

capture large dynamic range of 
inputs. Biologically plausible.

• Cons: Limited gradient-based 
approaches for learning are 
available. The algorithms often 
require complex PSP kernel 
models.

• We aim to bridge the robustness of 
rate codes and efficiency of timing 
codes through a probabilistic model 
of synaptic and neural dynamics 
embedded in the learning rule.

Future Directions
• Scaling up: Extending the 

framework to multilayer networks.
• Autodiff: Integrating stochastic 

gradient descent with automatic 
differentiation tools like PyTorch.

• Efficient Coding: Studying 
efficiency of codes learned through 
this method in the hidden layers.

Conclusions
• Noise to the rescue: Learning 

rule leveraging noise in the 
dynamics of LIF neurons can help 
learning sparse inputs or zero 
weight initialization.

• Continuum:  Stochasticity not 
only smoothens the spike 
Heaviside function for gradient 
computation but also provides a 
“tunable knob” to go from a rate-
based to a timing-based learning 
rule.
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Gradient Landscape

• Fixed points: The gradient 
landscape has stable fixed points at 
the optimal weight (!∗).

• Zero-weights: For non-zero 
gradients near zero weights, the 
noise should be high, whereas for 
stable fixed points near the 
optimum, the noise should be low.

This forms the rationale for “cooling” 
the model for learning.

C∗

vjaltare@ucsd.edu

1+ ( = 1+& +
1+' 	− 1+&

$ ⋅ (

Noise Scaling

Target distribution 
scaling

1$ ( = 1$& +
1$' 	− 1$&

$ ⋅ (

Gradient Ascent
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• - &  is the membrane post-synaptic 
potential (PSP) kernel

Gradient

(Assuming low firing rate)
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• Objective: Find the optimal weight 
!∗ such that:

.∗ = argmaxw	6(7 8 , :(8))

Succinctly, ℒ ; & , * & = ℒ(&)
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