
ScRRAMBLe
Block Sparse Neural Network Architecture for

Analog Compute-in Memory Accelerators

Vikrant Jaltare

Department of Bioengineering &

Institute for Neural Computation

UC San Diego

10th International Conference on Rebooting Computing 2025

Case for RRAM* based Compute-in Memory (CIM)
Technologies

IBM (2025)
Horowitz, IEEE ISSCC (2014)

Ielmini and Wong, Nature Electronics (2018)

M&M (2025)12/15/25

*valid for conductance-based memristive technologies

RRAM Crossbar Arrays for Neural Networks

12/15/25

𝐼𝑗
output

𝑉𝑖 = 𝑉𝐶𝑀 ± Δ𝑉𝑖

𝑉𝑜 ≈ 𝑉𝐶𝑀

Ohm’s Law

𝐼𝑗 = ෍

𝑖

𝐺𝑖𝑗 Δ𝑉𝑖

Matrix Vector

Multiplication

(MVM)

Neural Network Requirements

Efficient MVM (𝒪(𝑛2) or less)

Maybe change this to

how Crossbars support

neural networks

CIM Characteristics

Fast MVM (𝒪(1))

Good match! But…

High Density (but area

constraint)

Parameter updates → learning rules

→ outer product

Non-volatile storage →

incremental outer product

updates

Mid to low precision weights Analog multi-level storage

Large number of parameters

Challenges with using RRAM Accelerators

12/15/25

𝐼𝑗
output

𝑉𝑖 = 𝑉𝐶𝑀 ± Δ𝑉𝑖

𝑉𝑜 ≈ 𝑉𝐶𝑀

Ohm’s Law

𝐼𝑗 = ෍

𝑖

𝐺𝑖𝑗 Δ𝑉𝑖MVM

Scaling

Scaling is good for performance*

Maybe change this to

how Crossbars support

neural networks

CIM Characteristics

Area and communication cost

for bigger arrays

Signed weights

High precision partial sums Precision cost → ADC/DAC +

Parasitic components

Positive conductances →

Differential encoding

Sparsity and regularization (e.g.

dropout)

Underexplored…Sparsity and regularization (e.g.

dropout)

Signed Weights Sparsity

𝑊𝑖𝑗

chip

CIM

core

𝑊𝑖𝑗 > core size 𝑔𝑖𝑗 ∈ 𝑔𝑚𝑖𝑛, 𝑔𝑚𝑎𝑥

≈ 10−6𝑆 ≈ 10−3𝑆

Positive and limited

dynamic range

Differential encoding?

⟹

> 1 memory element per

weight.

Dropout → fine-grained

sparsity

Requires off-chip digital

controller → Latency
ADC

DAC

core-to-core communication

area cost

Mismatch issues

Challenges with using RRAM Accelerators

12/15/25

𝐼𝑗
output

𝑉𝑖 = 𝑉𝐶𝑀 ± Δ𝑉𝑖

𝑉𝑜 ≈ 𝑉𝐶𝑀

Ohm’s Law

𝐼𝑗 = ෍

𝑖

𝐺𝑖𝑗 Δ𝑉𝑖MVM

Scaling

Scaling is good for performance*

Maybe change this to

how Crossbars support

neural networks

CIM Characteristics

Area and communication cost

for bigger arrays

Signed weights

High precision partial sums Precision cost → ADC/DAC +

Parasitic components

Positive conductances →

Differential encoding

Sparsity and regularization (e.g.

dropout)

Underexplored…Sparsity and regularization (e.g.

dropout)

Signed Weights Sparsity

𝑊𝑖𝑗

chip

CIM

core

𝑊𝑖𝑗 > core size 𝑔𝑖𝑗 ∈ 𝑔𝑚𝑖𝑛, 𝑔𝑚𝑎𝑥

≈ 10−6𝑆 ≈ 10−3𝑆

Positive and limited

dynamic range

Differential encoding?

⟹

> 1 memory element per

weight.

Dropout → fine-grained

sparsity

Requires off-chip digital

controller → Latency
ADC

DAC

core-to-core communication

area cost

Mismatch issues

ScRRAMBLe → Framework to
leverage these constraints as
features for neural network

design?

12/15/25

Bird’s eye view of ScRRAMBLe
Challenge

Signed weights are expensive

Proposed solution

Input-balanced intercore routing

Intercore communication bottleneck Locally-dense, globally sparse

architecture → ”Block-sparsity”

Fine grained sparsity is expensive Tunable intercore connection density

Transferring full-precision data on

the bus is expensive

Apply activations locally and use

population coding frameworks (e.g.

Capsule Networks etc.)

12/15/25

Signed Weights with Input Balancing

𝑥𝑗 ෥𝑥𝑗

𝑪𝒊𝒋

෍

𝑗

 ෤𝑥𝑗 = 0

𝐺𝑖𝑗 ෥𝑥𝑗

positive RRAM

conductances

𝑦 = ෍

𝑗

𝐺𝑖𝑗 ෤𝑥𝑗

𝑦 = ෍

𝑗

𝑎𝑊𝑖𝑗 ෤𝑥𝑗

If 𝑎, 𝑏 ∈ ℝ, 𝑊𝑖𝑗 is signed

⟺

and,

𝐺𝑖𝑗 = 𝑎 𝑊𝑖𝑗 + 𝑏

∵ 𝑎𝑏 ෍

𝑗

෤𝑥𝑗 = 0

Offset canceling

signed neural

net weights

12/15/25

Signed Weights with Input Balancing

𝑥𝑗 ෥𝑥𝑗

𝑪𝒊𝒋

෍

𝑖

 ෤𝑥𝑖 = 0

𝐺𝑖𝑗 ෥𝑥𝑗

positive RRAM

conductances

𝑦 = ෍

𝑗

𝐺𝑖𝑗 ෤𝑥𝑗

𝑦 = ෍

𝑗

𝑎𝑊𝑖𝑗 ෤𝑥𝑗

If 𝑎, 𝑏 ∈ ℝ, 𝑊𝑖𝑗 is signed

⟺

and,

𝐺𝑖𝑗 = 𝑎 𝑊𝑖𝑗 + 𝑏

∵ 𝑎𝑏 ෍

𝑗

෤𝑥𝑗 = 0

Offset canceling

signed neural

net weights

𝑎, 𝑏 can be calculated in terms of

dynamic range (𝑔𝑚𝑎𝑥 , 𝑔𝑚𝑖𝑛) of

the RRAM elements

12/15/25

Implementing Input-Balanced Routing

𝑥𝑗

+𝑥𝑗 input registers

RRAM Core

−𝑥𝑗

෍

𝑗

෤𝑥𝑗 = 0

Can be implemented using LUTs

in hardware synthesis

Apply Capsule

Networks

framework to the

vector

…

Signed weights + No need for

having off-chip controller for

activations!

෥𝒙𝑗
1 … 𝒘1𝑗 …

weight sharing

ScRRAMBLe Architecture

12/15/25

Hardware Neural Network
weight sharing

activation

applied

here!

Performance of block-sparse networks

12/15/25

Optimal Sparsity Slot/Chunk size Small-world optimality

D
e
ns

it
y

Network size

12/15/25

Optimal Sparsity Slot/Chunk size Small-world optimality

D
e
ns

it
y

𝜂 = 𝑁𝑐𝑝 → Effective Fan-in

D
e
ns

it
y

𝜂 is constant over network size ⟹ some form of small-

worldness

Performance of block-sparse networks

Network size

Overcoming Communication Bottlenecks

12/15/25

Assumptions

1. Packet-switched communication

2. Feedforward block-sparse layer

3. Address bits (A) ∝ log2 (#chunks x

connection density)

4. Data bits (D) ∝ chunk size

𝑂 𝐴, 𝐷 =
𝐴

𝐴 + 𝐷

Communication Overhead (O)

Fully connected FFN

Overcoming Communication Bottlenecks

12/15/25

Assumptions

1. Packet-switched communication

2. Feedforward block-sparse layer

3. Address bits (A) ∝ log2 (#chunks x

connection density)

4. Data bits (D) ∝ chunk size

𝑂 𝐴, 𝐷 =
𝐴

𝐴 + 𝐷

Communication Overhead (O)

Echoing the “lottery-ticket

hypothesis*”

*Frankle, J. & Carbin, M. arXiv (2018).

Fully connected FFN

Best performance parameters

Quantized ScRRAMBLe Networks

12/15/25

Post Training Quantization Binary activation

• Full precision training

• Quantize ReLU-

activation post

training

• Error rate returns to

near full-precision

with only about 4-

bits
†

†
Wan, W. et al. Nature 608, 504–512 (2022).

• 1-bit (binary)

activation during

training

• Straight-through

estimator

• Error-rate falls to near

full precision baseline

Designing CIM accelerators with a new generation
of neural networks

12/15/25

Insights for hardware design Insights into NN design

1. Structured sparsity →

efficient design.

2. Routing can be part of the

compute and not just data

transfer.

1. Block-sparsity as a

regularizer.

2. Vector representations can

eliminate expensive off-chip

digital controllers + enable

generative modeling

3. Block-sparse networks as a

stand-in for FFNs.

3. Weight sharing is effective in

MVM, much like convolutions.

How can we make neural

networks block-sparse for CIM?

Acknowledgements

12/15/25

Funding Sources

Designing CIM accelerators with a new generation
of neural networks

12/15/25

Insights for hardware design Insights into NN design

1. Structured sparsity →

efficient design.

2. Routing can be part of the

compute and not just data

transfer.

1. Block-sparsity as a

regularizer.

2. Vector representations can

eliminate expensive off-chip

digital controllers + enable

generative modeling

3. Block-sparse networks as a

stand-in for FFNs.

3. Weight sharing is effective in

MVM, much like convolutions.

How can we make neural

networks block-sparse for CIM?

	Slide 1: ScRRAMBLe Block Sparse Neural Network Architecture for Analog Compute-in Memory Accelerators
	Slide 2: Case for RRAM* based Compute-in Memory (CIM) Technologies
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19

