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Case for RRAM* based Compute-in Memory (CIM)

Technologies

*valid for conductance-based memristive technologies

Why a decades old architecture
decision is impeding the power of
AI computing

Most computers are based on the von Neu = Google Scholar  memristors and crossbar arrays
which separates compute and memory. Tk

been perfect for conventional computing, ® Articles

traffic jam in AI computing.

1.1 Computing’s Energy Problem
(and what we can do about it)

Mark Horowitz

8. Conclusion

In summary, our challenge is clear: The drive for performance and the end of
voltage scaling have made power, and not the number of transistors, the prin-
gnts in computing performance.
will require the creation and effective
and will require the participation of
blay our cards right, and develop the
part of the design process, we will
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where the data are located™. This approach is similar to the com-
puting scheme in the human brain, where information is processed
in sparse networks of neurons and synapses, without any physical
separation between computation and memory'’. In-memory com-
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potential applications in data storage and artificial
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RRAM Crossbar Arrays for Neural Networks
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- Neural Network Requirements

Efficient MVM (O (n?) or less)

Large number of parameters

'\

T CIM Characteristics

Fast MVM (0(1))

High Density (but area

constraint)

Good match! But...

Parameter updates = learning rules
—> outer product

Mid to low precision weights

N

Non-volatile storage =2
incremental outer product
updates

Analog multi-level storage
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Challenges with using RRAM Accelerators

Scaling Signed Weights Sparsity

—

ij W;j > core size 9ij € [9min» Imax]

Positive and limited
dynamic range

core-to-core communication
Dropout - fine-grained

Differential encoding?

area cost sparsity
~ CIN J Requi ff-chip digital
equires off-chip digita
- controller = Latency
| > 1 memory element per
][ chip M weight.
= Mismatch issues
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Challenges with using RRAM Accelerators

Scaling Signed Weights
—rg—
Wy Wij > core size 9ij € [Imin Imaxl
Positive and limited
reisaere EemmuiiEiier ScCRRAMBLe = Framework to
area cost leverage these constraints as
L features for neural network
- design?
I ehip |l weight. |
— Mismatch issues

12/15/25

Sparsity

Dropout = fine-grained
sparsity

Requires off-chip digital
controller = Latency



Bird’s eye view of SCRRAMBLe

/ Challenge

Signed weights are expensive

Intercore communication bottlent==

Fine grained sparsity is expensive

Transferring full-precision data on
the bus is expensive

o

\

Q_/\’\

/ Proposed solution 4\

—> Input-balanced intercore routing

——
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—> Locally-dense, globally sparse
>y architecture = "Block-sparsity”

> Tunable intercore connection density

- Apply activations locally and use
population coding frameworks (e.g.
Capsule Networks etc.)

. /




Sighed Weights with Input Balancing

positive RRAM Offset canceling
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Sighed Weights with Input Balancing
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—_—

positive RRAM
conductances RN

a,b can be calculated in terms of

dynamic range (9maxs Gmin ) of
the RRAM elements

Offset canceling

y = z Gij%;
J
I
Yy = Z aWU?Z']
J

If a,b € R, W;;j is signed

and,

signed neural
net weights

Gij = a(W;; + b)
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Implementing Input-Balanced Routing
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in hardware synthesis
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weight sharing

RRAM Core

0

Signed weights + No need for
having off-chip controller for
activations!

J

Apply Capsule
Networks
framework to the
vector



ScCRRAMBLe Architecture

Hardware Neural Network
~ - - weight sharing
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Performance of block-sparse networks

O@O Optimal Sparsity O@O Slot /Chunk size Small-world optimality
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Performance of block-sparse networks

O@O Optimal Sparsity

O@O Slot /Chunk size

Small-world optimality
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7 is constant over network size = some form of small-
worldness



Overcoming Communication Bottlenecks
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Slot Size (bits)
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Connection Density

= 0.2
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=
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T~-o Fully connected FFN

/— Assumptions

1. Packet-switched communication

2. Feedforward block-sparse layer

3. Address bits (A) & log, (#chunks x
connection density)

4. Data bits (D) X chunk size

Communication Overhead (O)

A
OA,D) =——
(4,D) A+D
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Overcoming Communication Bottlenecks

Best performance parameters

256 - \
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Slot Size (bits)
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Connection Density
*Frankle, J. & Carbin, M. arXiv (2018).
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Echoing the “lottery-ticket
hypothesis™
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Packet-switched communication

Feedforward block-sparse layer

Address bits (A) X log, (#chunks x

connection density)

Data bits (D) & chunk size

Communication Overhead (O)

A
OA,D) =——
(4,D) A+D
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Quantized SCRRAMBLe Networks

Post Training Quantization

1.0 7
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"Wan, W. et al. Nature 608, 504-512 (2022).
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Full precision training

Quantize RelU-

activation post
training

Error rate returns to
near full-precision
with only about 4-
bits'

Error Rate

(0.050

(.045 1

(0.044) 1

(0.035 9

(0.030 A

Binary activation

0.025 -

[

Q0

20 30 a0
Mo. cores

1-bit (binary)
activation during
training

Straight-through
estimator

Error-rate falls to near
full precision baseline



Designing CIM accelerators with a new generation
of neural networks

Insights for hardware design
1. Structured sparsity 2>
efficient design.

2. Routing can be part of the
compute and not just data
transfer.

3. Weight sharing is effective in
MVM, much like convolutions.

12/15/25

How can we make neural
networks block-sparse for CIM?

Insights into NN design

1. Block-sparsity as a
regularizer.

2. Vector representations can
eliminate expensive off-chip
digital controllers + enable
generative modeling

3. Block-sparse networks as a
stand-in for FFNs.
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Designing CIM accelerators with a new generation
of neural networks

Insights for hardware design
1. Structured sparsity 2>
efficient design.

2. Routing can be part of the
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How can we make neural
networks block-sparse for CIM?

Insights into NN design

1. Block-sparsity as a
regularizer.

2. Vector representations can
eliminate expensive off-chip
digital controllers + enable
generative modeling

3. Block-sparse networks as a
stand-in for FFNs.
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