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Case for RRAM* based Compute-in Memory (CIM) 
Technologies

IBM (2025) 
Horowitz, IEEE ISSCC (2014) 

Ielmini and Wong, Nature Electronics (2018) 

M&M (2025)12/15/25

*valid for conductance-based memristive technologies



RRAM Crossbar Arrays for Neural Networks
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𝑉𝑖 = 𝑉𝐶𝑀 ± Δ𝑉𝑖
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Ohm’s Law
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𝐺𝑖𝑗 Δ𝑉𝑖

Matrix Vector 

Multiplication 

(MVM)

Neural Network Requirements

Efficient MVM (𝒪(𝑛2) or less)

Maybe change this to 

how Crossbars support 

neural networks

CIM Characteristics

Fast MVM (𝒪(1))

Good match! But…

High Density (but area 

constraint)

Parameter updates → learning rules 

→ outer product

Non-volatile storage → 

incremental outer product 

updates

Mid to low precision weights Analog multi-level storage

Large number of parameters
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Ohm’s Law

𝐼𝑗 = ෍

𝑖

𝐺𝑖𝑗 Δ𝑉𝑖MVM

Scaling

Scaling is good for performance*

Maybe change this to 

how Crossbars support 

neural networks

CIM Characteristics

Area and communication cost 

for bigger arrays 

Signed weights

High precision partial sums Precision cost → ADC/DAC + 

Parasitic components

Positive conductances → 

Differential encoding 

Sparsity and regularization (e.g. 

dropout)

Underexplored…Sparsity and regularization (e.g. 

dropout)

Signed Weights Sparsity

𝑊𝑖𝑗

chip

CIM

core

𝑊𝑖𝑗 > core size 𝑔𝑖𝑗 ∈ 𝑔𝑚𝑖𝑛, 𝑔𝑚𝑎𝑥  

≈ 10−6𝑆 ≈ 10−3𝑆

Positive and limited 

dynamic range

Differential encoding?

⟹

> 1 memory element per 

weight.

Dropout → fine-grained 

sparsity

Requires off-chip digital 

controller → Latency
ADC

DAC

core-to-core communication

area cost

Mismatch issues
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> 1 memory element per 

weight.

Dropout → fine-grained 

sparsity

Requires off-chip digital 

controller → Latency
ADC

DAC

core-to-core communication

area cost

Mismatch issues

ScRRAMBLe → Framework to 
leverage these constraints as 
features for neural network 

design? 
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Bird’s eye view of ScRRAMBLe
Challenge

Signed weights are expensive

Proposed solution

Input-balanced intercore routing

Intercore communication bottleneck Locally-dense, globally sparse 

architecture → ”Block-sparsity”

Fine grained sparsity is expensive Tunable intercore connection density

Transferring full-precision data  on 

the bus is expensive

Apply activations locally and use 

population coding frameworks (e.g. 

Capsule Networks etc.)
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Signed Weights with Input Balancing
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Offset canceling

signed neural 

net weights
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Signed Weights with Input Balancing
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𝑗

෤𝑥𝑗 = 0

Offset canceling

signed neural 

net weights

𝑎, 𝑏 can be calculated in terms of 

dynamic range (𝑔𝑚𝑎𝑥 , 𝑔𝑚𝑖𝑛 ) of 

the RRAM elements
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Implementing Input-Balanced Routing

𝑥𝑗

+𝑥𝑗 input registers

RRAM Core

−𝑥𝑗

෍

𝑗

෤𝑥𝑗 = 0

Can be implemented using LUTs 

in hardware synthesis

Apply Capsule 

Networks 

framework to the 

vector

…

Signed weights + No need for 

having off-chip controller for 

activations! 

෥𝒙𝑗
1 … 𝒘1𝑗  …

weight sharing



ScRRAMBLe Architecture
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Hardware Neural Network
weight sharing

activation 

applied 

here!



Performance of block-sparse networks
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Optimal Sparsity Slot/Chunk size Small-world optimality
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Optimal Sparsity Slot/Chunk size Small-world optimality

D
e
ns

it
y

𝜂 = 𝑁𝑐𝑝 → Effective Fan-in

D
e
ns

it
y

𝜂 is constant over network size  ⟹ some form of small-

worldness

Performance of block-sparse networks

Network size



Overcoming Communication Bottlenecks
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Assumptions

1. Packet-switched communication

2.  Feedforward block-sparse layer

3.  Address bits (A) ∝ log2 (#chunks x 

connection density)

4.  Data bits (D) ∝ chunk size

𝑂 𝐴, 𝐷 =
𝐴

𝐴 + 𝐷

Communication Overhead (O)

Fully connected FFN
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Assumptions

1. Packet-switched communication

2.  Feedforward block-sparse layer

3.  Address bits (A) ∝ log2 (#chunks x 

connection density)

4.  Data bits (D) ∝ chunk size

𝑂 𝐴, 𝐷 =
𝐴

𝐴 + 𝐷

Communication Overhead (O)

Echoing the “lottery-ticket 

hypothesis*”

*Frankle, J. & Carbin, M. arXiv (2018). 

Fully connected FFN

Best performance parameters



Quantized ScRRAMBLe Networks
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Post Training Quantization Binary activation

• Full precision training

• Quantize ReLU-

activation post 

training

• Error rate returns to 

near full-precision 

with only about 4-

bits
†

†
Wan, W. et al. Nature 608, 504–512 (2022). 

• 1-bit (binary) 

activation during 

training

• Straight-through 

estimator

• Error-rate falls to near 

full precision baseline



Designing CIM accelerators with a new generation 
of neural networks 
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Insights for hardware design Insights into NN design

1. Structured sparsity → 

efficient design.

2. Routing can be part of the 

compute and not just data 

transfer.

1. Block-sparsity as a 

regularizer.

2. Vector representations can 

eliminate expensive off-chip 

digital controllers + enable 

generative modeling

3. Block-sparse networks as a 

stand-in for FFNs.

3. Weight sharing is effective in 

MVM, much like convolutions.

How can we make neural 

networks block-sparse for CIM?
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